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Abstract
We demonstrate that Coxeter groups allow for complex PT -symmetric
deformations across the boundaries of all Weyl chambers. We compute
the explicit deformations for the A2 and G2-Coxeter group and apply
these constructions to Calogero–Moser–Sutherland models invariant under the
extended Coxeter groups. The eigenspectra for the deformed models are real
and contain the spectra of the undeformed case as subsystems.

PACS numbers: 03.65.−w, 02.30.Ik, 02.30.Jr, 03.65.Fd, 21.45.+v

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of pseudo-Hermitian Hamiltonian systems has attracted a considerable amount of
attention in the last few years. For recent reviews and special issues devoted to this topic
see [1–4]. One of the main reasons for the popularity of these types of Hamiltonians is the
fact that they possess real eigenvalue spectra, despite of being non-Hermitian, and therefore
constitute interesting candidates for a new sort of stable physical systems overlooked up till
now. Alternatively to use the concepts of pseudo-Hermiticity [5] or quasi-Hermiticity [36, 37]
one may equivalently explain the reality of the spectrum of some non-Hermitian Hamiltonians
when one encounters unbrokenPT -symmetry, which in the recent context was first pointed out
in [6]. Unbroken specifies that both the Hamiltonian and the wavefunction remain invariant
under a simultaneous parity transformation P : x → −x and time reversal T : t → −t . When
acting on complex valued functions the anti-linear operator T is understood to act as complex
conjugation.

These observations can be exploited in the construction of new interesting models with real
eigenvalue spectra when taking previously studied Hermitian examples as starting points. The
above statements imply that one has two possibilities at hand. One could either employ pseudo-
Hermiticity, which involves the usually technically difficult task to construct a meaningful
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metric, e.g. [7–12], or in contrast use PT -symmetry as a very transparent and simple principle,
at least on the level of the Hamiltonian itself. Starting with a PT -symmetric Hamiltonian or
less restrictive with a parity invariant potential system one may extend such type of models by
adding PT -symmetric terms to it or by deforming existing terms in a PT -symmetric manner.
The latter construction principle has been applied to a huge number of models, notably the
harmonic oscillator in [13], which constitutes the starting point of the current activities in this
field of research.

In the context of Calogero models [14–16] such type of extensions were first carried
out in [17, 18] by adding PT -symmetric terms to the An and Bn-Calogero models. Shortly
afterwards an alternative procedure was proposed in [19], where the A2—Calogero model was
genuinely deformed in a PT -symmetric manner. The analysis in [17] was extended thereafter
in [20] to Calogero models related to all Coxeter groups and also generalized to the larger class
of Calogero–Moser–Sutherland (CMS) models [14–16, 21–25] involving more general types
of potentials rather than the rational one. Other versions of deformations of CMS-models have
also been proposed for instance in [26], albeit a concrete relation to PT -symmetry had not
been established, even though it is easy to verify that the models constructed in [26] are also
PT -symmetric. The purpose of this paper is to provide the general mathematical framework
for the deformation carried out in [19] and generalize the construction to all Coxeter groups
and more general potentials. Thereafter we study some of the physical properties of the newly
obtained models.

Our manuscript is organized as follows: in order to fix our conventions we recall in
section 2 some of the basic features of CMS-models and indicate the structure we expect
to find for the deformed models. In section 3 we demonstrate how Coxeter groups may be
systematically deformed in a PT -symmetric manner. We illustrate the general setting with
the two explicit examples of the A2 and G2-Coxeter group. We apply these constructions
in section 4 to CMS-models, which are invariant under the extended Coxeter group. We
show that models for which this invariance is broken in a particular way also possess
interesting properties. Thereafter we specialize in the Calogero models and construct their
eigensystems for some specific deformations. The key finding is that some constraints on
the parameter space of the model resulting from physical requirements may be relaxed in
the deformed model. For some simple extended models we demonstrate that the energy
spectrum is real and contains the undeformed case as a subsystem. We state our conclusions in
section 5.

2. Extended symmetries for Calogero–Moser–Sutherland models

Let us briefly recall some features of the CMS-models, which will be relevant for our analysis.
The models describe n particles moving on a line, whose coordinates q and canonically
conjugate momenta p may be assembled into vectors q, p ∈ R

n. The Hamiltonian for the
CMS-models related to all Coxeter groups W may be written generically as

HCMS = p2

2
+

m2

16

∑
α∈�s

(α · q)2 +
1

2

∑
α∈�

gαV (α · q) m, gα ∈ R. (2.1)

The dimensionality of the space in which the roots α of the root system � are realized is n.
The sum in the confining term of the potential only extends over the short roots �s . One may
impose further restrictions on the coupling constants gα in order to guarantee integrability
[24, 25, 27] and invariance of the Hamiltonian under the action of W . The latter demands that
gα = gβ when the roots α and β have the same length, i.e. if α2 = β2. When the potential
V is taken to be V (x) = 1/x2 the Hamiltonian (2.1) constitutes the Calogero model, whereas
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the generalized CMS-models are obtained by choosing V (x) = 1/ sin2 x, V (x) = 1/ sinh2 x

or V (x) = 1/sin2x.
A key feature of the model (2.1) for our purposes is that it admits the entire Coxeter group

W as a symmetry, i.e.

HCMS = σip · σip

2
+

m2

16

∑
α∈�s

(α · σiq)2 +
1

2

∑
α∈�

gαV (α · σiq),

= p2

2
+

m2

16

∑
α∈�s

(
σ−1

i α · q
)2

+
1

2

∑
α∈�

gαV
(
σ−1

i α · q
)
, (2.2)

where σi can be any Weyl reflection (3.1). For the confining term to remain invariant we need
to say that short roots are mapped into short roots by the entire Coxeter group. This symmetry
stipulates that these models are invariant with respect to various parity transformations P
across the hyperplanes through the origin orthogonal to the root αi or in other words across
the boundaries of all Weyl chambers.

Our aim is here to modify the models such that they remain invariant under the action of
the newly defined PT -symmetrically extended Coxeter group, which we denote by WPT . We
propose the new Hamiltonians to be of the form

HPT CMS = p2

2
+

m2

16

∑
α̃∈�̃s

(α̃ · q)2 +
1

2

∑
α̃∈�̃

gα̃V (α̃ · q) m, gα̃ ∈ R, (2.3)

where we have replaced the standard roots α ∈ � by deformed roots α̃ ∈ �̃. Formally HCMS

and HPT CMS are very similar, with the crucial difference that the latter is in general complex
and non-Hermitian.

Nonetheless, the PT -symmetry can be utilized to establish the reality of the spectrum
with a minor modification. As we have complexified here each Weyl reflection across any
hyperplane orthogonal to every root we have as many PT -operators, i.e. anti-linear operators,
as hyperplanes. This means we can employ any of these operators in the standard argument3.
In turn this also means that we could in principle make our construction less constraining
by demanding less symmetry. What is of course not known at this point is whether the
wavefunctions of the deformed Hamiltonian also respect the extended symmetry. However,
as we shall demonstrate below with some concrete examples this can be the case.

In order to see that such type of models really exist and how these models can be
constructed we need to assemble first some mathematical tools and establish the fact that one
can indeed construct a meaningful set of deformed roots α̃.

3. PT -symmetric deformations of Coxeter groups

We recall, see, e.g. [28, 29], that a Coxeter group W is generated by the Weyl reflections σi

associated with a set of simple roots {αi} which span the entire root space �

σi(x) = x − 2
x · αi

α2
i

αi for 1 � i � � ≡ rank W; x, αi ∈ R
n. (3.1)

3 By construction σ̃αi
, see (3.5) for definition, is a symmetry of the new Hamiltonian HPT CMS, that is we have

[HPT CMS, σ̃αi
] = 0. Assuming further that the eigenfunctions are also invariant with regard to WPT , i.e. σ̃αi

� = �,
the reality of the eigenspectrum follows trivially from:

ε� = HPT CMS� = HPT CMSσ̃αi
� = σ̃αi

HPT CMS� = σ̃αi
ε� = ε∗σ̃αi

� = ε∗�.

3
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The roots may be represented in various different Euclidean spaces with dimensionality not
necessarily equal to �. Here our aim is to construct a complex extended root system �̃(ε)

containing the roots α̃i(ε) represented in R
n ⊕ iRn, depending on some deformation parameter

ε ∈ R. We demand that each deformed root reduces one-to-one to a root in the root space �

lim
ε→0

α̃i(ε) = αi for α̃i(ε) ∈ �̃(ε), αi ∈ �, (3.2)

such that the entire root space reduces as

lim
ε→0

�̃(ε) = �. (3.3)

Furthermore, we require that the extended root system �̃(ε) remains invariant under the PT -
symmetrically extended Coxeter group WPT . Note that in principle we may choose any of the
hyperplanes through the origin orthogonal to a root αi ∈ � across which the parity symmetry
P can be extended to a PT -symmetry. Thus we could expect �h × �h/2 deformed roots,
with h denoting the Coxeter number and �h being the total number of roots. However, the
deformations to any of the hyperplanes can in fact be made equivalent and the replacement

αi → α̃i(ε) for 1 � i � �h, (3.4)

becomes indeed one-to-one as we shall see below.
From these requirements we may now attempt to construct the root system �̃(ε). We start

by selecting a particular root αi , which does not have to be simple, and perform a complex
PT -symmetric extension across the hyperplane through the origin orthogonal to this root.
This deformation leads to a new, so far unspecified root α̃i(ε). Studying now the properties of
this root will enable us to determine it. Decomposing the complex extended Weyl reflection
into a product of standard Weyl reflections (3.1) and a complex conjugation (time-reversal) as

σ̃αi
:= σαi

T , (3.5)

we compute its action on a root

σ̃αj
(α̃j (ε)) = σαj

T (Re α̃j (ε)) + σαj
T (i Im α̃j (ε)) (3.6)

= σαj
(Re α̃j (ε)) − iσαj

(Im α̃j (ε)) (3.7)

= −Re α̃j (ε) − i Im α̃j (ε) (3.8)

= −α̃j (ε). (3.9)

In view of (3.2) we demanded here that the complex extended Weyl reflection σ̃αi
maps the

deformed root α̃i(ε) into its negative which should in view of the limit (3.2) also hold for
the real part independently. For the remaining term of the root the minus sign is created by
the complex conjugation T , such that the imaginary part has to be invariant under the Weyl
reflection, i.e. it has to be a vector lying in the hyperplane across which the reflection is carried
out. Comparing now (3.8) and (3.9) we find as solution for α̃i(ε)

Re α̃i(ε) = R(ε)αi and Im α̃i(ε) = I (ε)
∑
j �=i

κjλj , (3.10)

where κj ∈ R and λi have to be elements of the weight lattice, i.e. they are orthogonal to the
simple roots 2λi · αj/α

2
j = δij . The real valued functions R(ε) and I (ε) are arbitrary at this

stage, with the only condition to satisfy

lim
ε→0

R(ε) = 1 and lim
ε→0

I (ε) = 0, (3.11)

in order to fulfil the requirement (3.2). Note that R(ε) and I (ε) may also be multiplied by any
invariant of the extended Weyl group WPT .
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The remaining roots can be constructed by acting with all possible non-equivalent �h − 1
reflections σαi

T on these roots and hence producing the anticipated number of �h roots
α̃i(ε) ∈ �̃(ε). Supposing now we have constructed a new root as β = σ̃αk

(α̃i), it is then clear
that by construction also for that new root the imaginary part is orthogonal to its real part

Re β · Im β = σαk
(Re α̃i) · σαk

(Im α̃i) = Re α̃i · Im α̃i = 0. (3.12)

The property which is, however, not guaranteed is that the decomposition of the undeformed
root into a sum over simple roots α = ∑

i=1 αi is preserved by the deformation. Nonetheless,
we shall verify this feature for the explicit examples below. Sometimes we can even find

α̃i · α̃j = σ̃αk
(α̃i) · σ̃αk

(α̃j ), (3.13)

for which there is also no general justification. When (3.13) holds we can even impose a
stronger constraint and require that inner products of roots and deformed roots are identical

αi · αj = α̃i · α̃j , (3.14)

which allows us to fix the functions R(ε) and I (ε).
Alternatively to the above construction we may also deform each root as

αi → α̃i(ε) = R(ε)αi ± iI (ε)αi for αi ∈ �±. (3.15)

Note that in this deformation positive and negative roots in �̃+ and �̃− are no longer related by
an overall minus sign as in �+ and �−, where αi ∈ �+ always has a counter part −αi ∈ �−.
However, by construction we still have the property

σ̃αi
(α̃i(ε)) = −α̃i(ε), (3.16)

which is needed to achieve invariance under the extended Coxeter group WPT . Now, unlike
as in the previous construction, the minus sign for the imaginary part is created by definition
and not by the action of σ̃αi

. In general, we may encounter the four possibilities

σ̃αi
(α̃j (ε)) ∈ ±�̃− for σαi

(αj (ε)) ∈ �∓, α̃j (ε) ∈ �̃+, (3.17)

σ̃αi
(α̃j (ε)) ∈ ±�̃+ for σαi

(αj (ε)) ∈ �±, α̃j (ε) ∈ �̃−. (3.18)

Thus any root α̃i(ε) ∈ �̃ of the form (3.15) is guaranteed to be mapped into ±�̃ under the
action of WPT , which means the deformed root system remains only invariant up to an overall
sign. However, in our application below overall signs are irrelevant so that the deformation
(3.15) will be suitable for the application in mind.

Let us now verify that the procedure outlined above indeed leads to a closed PT -
symmetrically extended Weyl group WPT for some concrete examples.

3.1. PT -symmetric deformations of the A2-Coxeter group

We recall first the action of the Weyl reflections on the simple roots by computing (3.1) with
the Cartan matrix Kij = 2αi · αj/α

2
j , whose entries are K11 = K22 = 2,K12 = K21 = −1.

The combinations of Weyl reflections achieving a reflection across the hyperplanes through
the origin orthogonal to the three positive roots α1, α2 and α1 + α2 of A2 are

σ1: α1 �→ −α1, α2 �→ α1 + α2, α1 + α2 �→ α2,

σ2: α1 �→ α1 + α2, α2 �→ −α2, α1 + α2 �→ α1,

σ1σ2σ1: α1 �→ −α2, α2 �→ −α1, α1 + α2 �→ −α1 − α2.

(3.19)

As a starting point for the deformation we choose the simple root α1 and extend the parity
symmetry across the hyperplane through the origin orthogonal to this root. According to
(3.10) the deformed root should be taken to

α̃1(ε) := R(ε)α1 ± iI (ε)λ2, (3.20)

5
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where we introduced the fundamental weight λ2 = (α1 + 2α2)/3. Next we compute the action
of the complex reflections σ̃αi

on this root in order to construct the remaining five deformed
roots. By construction we have

σ̃1α̃1(ε) = −R(ε)α1 ∓ iI (ε)λ2 =: −α̃1(ε). (3.21)

Having determined ±α̃1 we may calculate the deformations of α2 from ∓σ̃1σ̃2σ̃1α̃1 guided by
the undeformed case (3.19). We compute

−σ̃1σ̃2σ̃1α̃1(ε) = R(ε)α2 ∓ iI (ε)λ1 =: α̃2(ε), (3.22)

where we obtained the fundamental weight λ1 = (2α1 + α2)/3. We may verify that the
remaining reflections in (3.19) indeed yield a consistent system

σ̃2α̃1(ε) = R(ε)(α1 + α2) ∓ iI (ε)(λ1 − λ2) = α̃1(ε) + α̃2(ε), (3.23)

σ̃1α̃2(ε) = R(ε)(α1 + α2) ∓ iI (ε)(λ1 − λ2) = α̃1(ε) + α̃2(ε), (3.24)

σ̃2α̃2(ε) = −R(ε)α2 ± iI (ε)λ1 = −α̃2(ε), (3.25)

σ̃1σ̃2σ̃1α̃2(ε) = −R(ε)α1 ∓ iI (ε)λ2 = −α̃1(ε). (3.26)

We may verify that in (3.23) and (3.24) the imaginary part of the deformed root α̃1(ε) + α̃2(ε)

is indeed orthogonal to the root α1 + α2 as it should be by construction. Alternatively
we could have started with the expressions (3.20) and (3.22) involving the ambiguities
of the relative signs in front of the imaginary parts and the unknown functions R(ε) and
I (ε). The subsequent action of combinations of σ̃1 and σ̃2 would fix the sign ambiguity and
produce the same set of deformed roots. Note that we also have the property

α̃i · α̃j = σ̃αk
(α̃i) · σ̃αk

(α̃j ), i, j, k = 1, 2. (3.27)

If we impose the additional constraint that inner products of root and deformed roots are
identical

αi · αj = α̃i · α̃j , (3.28)

we may fix the deformation functions to R(ε) = cosh ε, I (ε) = √
3 sinh ε. The factor of√

3 in the function I (ε) is somewhat natural as it ensures that the roots in the real part of the
deformed roots α̃i(ε) and the weights in the imaginary part have the same length. As intended,
we have achieved a simple one-to-one relation between (3.19) and the corresponding identities
for the deformed system simply by replacing σi → σ̃i and αi → α̃i(ε). We depict the roots
and the hyperplanes in figure 1.

Alternatively we can deform the six roots according to the principle (3.16) as

±α1 → α̃±
1 = ±R(ε)α1 + iI (ε)α1 (3.29)

±α2 → α̃±
2 = ±R(ε)α2 + iI (ε)α2 (3.30)

±(α1 + α2) → α̃±
1 + α̃±

2 = ±R(ε)(α1 + α2) + iI (ε)(α1 + α2). (3.31)

As pointed out we no longer have α̃−
1 = −α̃+

1 . Nonetheless, it is easy to verify that these roots
are mapped into each other by WPT as

σ̃1: α̃+
1 �→ α̃−

1 , α̃+
2 �→ −(α̃−

1 + α̃−
2 ), α̃+

1 + α̃+
2 �→ −α̃−

2 ,

σ̃2: α̃+
1 �→ −(α̃−

1 + α̃−
2 ), α̃+

2 �→ −α̃−
2 , α̃+

1 + α̃+
2 �→ −α̃−

1−,

σ̃1σ̃2σ̃1: α̃+
1 �→ α̃−

2 , α̃+
2 �→ α̃−

1 , α̃+
1 + α̃+

2 �→ α̃−
1 + α̃−

2 .

(3.32)

For these roots the inner product is not preserved and (3.27) does not hold in this case.

6
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Re α1

Re α2Im α1

Im α2

Re α1 2

Im α1 2

1

0

1

∋

∋

1

1

0

1

2

1

0

1

3

∋

Figure 1. Real and imaginary parts of the A2 deformed roots divided by R(ε) and I (ε),
respectively, in the three-dimensional standard representation for the simple roots α1 = ε1 − ε2,

α2 = ε2 − ε3. Both parts of a particular positive root α̃i are depicted in the same color (on-line).

Table 1. Simple Weyl reflections acting on the six positive roots of G2.

α1 α1 + α2 2α1 + α2 α2 3α1 + α2 3α1 + 2α2

σ1: −α1 2α1 + α2 α1 + α2 3α1 + α2 α2 3α1 + 2α2

σ2: α1 + α2 α1 2α1 + α2 −α2 3α1 + 2α2 3α1 + α2

σ2σ1σ2: 2α1 + α2 −α1 − α2 α1 −3α1 − 2α2 3α1 + α2 −α2

σ1σ2σ1: −2α1 − α2 α1 + α2 −α1 3α1 + 2α2 −3α1 − α2 α2

σ1σ2σ1σ2σ1: −α1 − α2 −α1 −2α1 − α2 α2 −3α1 − 2α2 −3α1 − α2

σ2σ1σ2σ1σ2: α1 −2α1 − α2 −α1 − α2 −3α1 − α2 −α2 −3α1 − 2α2

3.2. PT -symmetric deformations of the G2-Coxeter group

Since only roots of one length emerge in root systems related to simply laced Lie algebras,
some features discussed this far are slightly different for non-simply laced cases. Let us
therefore present one explicit example in order to exhibit the differences. We recall, see, e.g.
[28, 29], that the set of roots invariant under the G2-Coxeter group separates into a set of short
and long roots �s and �l , respectively,

� = �s ∪ �l = ±{α1, (α1 + α2), (2α1 + α2)} ∪ ±{α2, (3α1 + α2), (3α1 + 2α2)}. (3.33)

Using the Cartan matrix with entries K11 = K22 = 2,K12 = −1 and K21 = −3 we may
compute the action of the Weyl reflections on the simple roots by evaluating (3.1). The
combinations of Weyl reflections achieving a reflection across the hyperplanes through the
origin orthogonal to the six positive roots are presented in table 1.

7



J. Phys. A: Math. Theor. 41 (2008) 194010 A Fring and M Znojil

Having assembled the key properties for the undeformed root system, we choose as a starting
point for the construction of �̃ the deformation of the simple roots α1 or α2 and extend the
parity symmetry across the hyperplane through the origin orthogonal to these roots. According
to (3.10) the deformed counterparts can be taken to be

α̃1(ε) = R(ε)α1 ± iI (ε)λ2, (3.34)

α̃2(ε) = R(ε)α2 ∓ i3I (ε)λ1, (3.35)

where we used the two fundamental weights λ1 = 2α1 + α2 and λ2 = 3α1 + 2α2 of G2. Acting
now with products of the complex reflections σ̃αi

first on α̃1(ε) yields the deformations of the
short roots

σ̃1α̃1(ε) = −R(ε)α1 ∓ iI (ε)λ2 = −α̃1(ε), (3.36)

σ̃2α̃1(ε) = R(ε)(α1 + α2) ∓ iI (ε)(3λ1 − λ2) = α̃1(ε) + α̃2(ε), (3.37)

σ̃1σ̃2σ̃1α̃1(ε) = −R(ε)(2α1 + α2) ∓ iI (ε)(3λ1 − 2λ2) = −2α̃1(ε) − α̃2(ε), (3.38)

σ̃2σ̃1σ̃2α̃1(ε) = R(ε)(2α1 + α2) ∓ iI (ε)(3λ1 − 2λ2) = 2α̃1(ε) + α̃2(ε), (3.39)

σ̃1σ̃2σ̃1σ̃2σ̃1α̃1(ε) = −R(ε)(α1 + α2) ± iI (ε)(3λ1 − λ2) = −α̃1(ε) − α̃2(ε), (3.40)

σ̃2σ̃1σ̃2σ̃1σ̃2α̃1(ε) = R(ε)α1 ± iI (ε)λ2 = α̃1(ε). (3.41)

The action of products of reflections σ̃αi
on α̃2(ε) yields the deformations of the long roots

σ̃1α̃2(ε) = R(ε)(3α1 + α2) ∓ i3I (ε)(λ1 − λ2) = 3α̃1(ε) + α̃2(ε), (3.42)

σ̃2α̃2(ε) = −R(ε)α2 ± i3I (ε)λ1 = −α̃2(ε), (3.43)

σ̃1σ̃2σ̃1α̃2(ε) = R(ε)(3α1 + 2α2) ∓ i3I (ε)(2λ1 − λ2) = 3α̃1(ε) + 2α̃2(ε), (3.44)

σ̃2σ̃1σ̃2α̃2(ε) = −R(ε)(3α1 + 2α2) ± i3I (ε)(2λ1 − λ2) = −3α̃1(ε) − 2α̃2(ε), (3.45)

σ̃1σ̃2σ̃1σ̃2σ̃1α̃2(ε) = R(ε)α2 ∓ i3I (ε)λ1 = α̃2(ε), (3.46)

σ̃2σ̃1σ̃2σ̃1σ̃2α̃2(ε) = −R(ε)(3α1 + α2) ± i3I (ε)(λ1 − λ2) = −3α̃1(ε) − α̃2(ε). (3.47)

For a particular representation we depict the constructed roots in figure 2.
As it should be by construction, we can check for consistence once more that indeed the

imaginary part is orthogonal to the real part of each deformed root. Again we observe the
property

α̃i · α̃j = σ̃αk
(α̃i) · σ̃αk

(α̃j ), i, j, k = 1, 2 (3.48)

and with the additional requirement

αi · αj = α̃i · α̃j , (3.49)

we may fix the deformation functions to R(ε) = cosh ε, I (ε) = 1/
√

3 sinh ε. We have
achieved a simple one-to-one relation between (3.19) and the corresponding identities for the
deformed system simply by replacing σi → σ̃i and αi → α̃i(ε).

Clearly we can also choose the deformation according to (3.15) as for the A2-case, but
we will not report this here.

8
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Figure 2. Real and imaginary parts of the G2-deformed roots in the two-dimensional basis for the
simple roots α1 = (ε2 − √

3ε1)/
√

2, α2 = √
6ε1. Both parts of a particular positive root α̃i are

depicted in the same line style (on-line also color).

4. PT -symmetric deformations of Calogero–Moser–Sutherland models

Taking the previous remarks into account it is now straightforward to formulate new types
of CMS-models, which are invariant under the action of PT -symmetrically extended Weyl
groups WPT . The Hamiltonian will be of the form HPT CMS as specified in (2.3). Let us study
some concrete examples.

4.1. PT -symmetrically deformed A2-Calogero–Moser–Sutherland models

Beyond the two particle problem the A2-CMS model is the simplest classical example,
constituting in some representation the three-body problem with a two-particle interaction
[16]. For this Coxeter group we consider now the Hamiltonian HPT CMS in (2.3) with the
two simple roots taken in the standard three-dimensional representation α1 = ε1 − ε2 and
α2 = ε2 − ε3, with εi being an orthogonal basis in R

3 with εi · εj = δij and the dynamical
variables to be q = {q1, q2, q3}. Using then the deformed roots as constructed in (3.20)–(3.26),
the potential of the PT -symmetrically extended model acquires the form

V
A2
PT CMS = g

∑
1�j<k�3

j,k �=l

V [R(ε)(qj − qk) + i(−1)j+kI (ε)(qj + qk − 2ql)], (4.1)

where V (x) can be of Calogero type, i.e. V (x) = 1/x2 or any of the functions 1/ sin2 x,

1/ sinh2 x, 1/sin2x.
By construction these potentials are symmetric with regard to WPT , which of course can

also be seen explicitly for the dynamical variables σ̃α1 ≡ q1 ↔ q2, i → −i, σ̃α2 ≡ q2 ↔ q3,

i → −i and σ̃α1+α2 ≡ q1 ↔ q3, i → −i.
Instead of the three-dimensional representation we may also represent the roots in a

two-dimensional space, i.e. α1 = √
2ε1 , α2 = √

3/2ε2 − √
2ε1 and express the dynamical

variables in terms of Jacobi relative coordinates q = {X, Y }. Comparison between the two
representations then leads to the well-known relations between the different sets of variables

9
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X = (q1 −q2)/
√

2 and Y = (q1 +q2 −2q3)/
√

6. The third coordinate is usually taken to be the
center-of-mass coordinate R = (q1 + q2 + q3)/3. Moreover, it is convenient to parameterizeX
and Y further in terms of polar coordinates X = r sin φ, Y = r cos φ. In this formulation
the relations for the potential simplify even more with the special choice R(ε) = cosh ε and
I (ε) = √

3 sinh ε as already mentioned after (3.28). With these choices the potential (4.1) is
transformed into

V
A2
PT CMS = g

∑
k=−1,0,1

V

[√
2r sin

(
φ − iε + k

2π

3

)]
. (4.2)

Taking the special case V (x) = g/x2 the version (4.2) of the PT -symmetrically extended
A2-Calogero model is essentially the potential suggested in [19], where it was obtained by
deforming directly the Calogero model in the form (4.2) for ε = 0 across the symmetry
φ → −φ via the recipe φ �→ φ − iε. We have demonstrated here how to obtain it as a
special case from a more general and systematic setting. The virtue of the version (4.2) in
the new coordinate system is that it leads to a separable Schrödinger equation. In section 4.3
we make use of this fact and investigate some properties of the model, notably to construct its
eigenfunctions and eigenvalues. Clearly we may also choose the deformations according to
the alternative deformation (3.15), in which case thePT -symmetrically extended model is of
the form

V
A2
PT CMS = g

2

∑
1�j<k�3

V [(R(ε) + iI (ε))(qj − qk)] +
g

2

∑
1�j<k�3

V [(R(ε) − iI (ε))(qj − qk)],

(4.3)

when choosing the roots to be in the standard representation. Note that, whereas in the
undeformed case the contributions form any negative roots equals that resulting from its
positive counterpart, now these roots give different contributions. Expressing (4.3) in terms
of Jacobian relative coordinates and making in addition the choice R(ε) = 1 and I (ε) = ε/r

the potential simply becomes

V
A2
PT CMS = g

2

∑
k=0,±1

[
V

[√
2(r + iε) sin

(
φ +

2π

3
k

)]
+ V

[√
2(r − iε) sin

(
φ +

2π

3
k

)]]
.

(4.4)

Note that in the choice for I (ε) we made use of the fact that we can multiply this quantity by
any invariant of WPT . Clearly r =

√
(α1 · q)2/3 + (α2 · q)2/3 + (α1 · q + α2 · q)2/3 is such

an invariant. Thus when we restrict the sum in (4.3), (4.4) to the positive or negative roots
only the deformation is simply achieved by r �→ r + iε or r �→ r − iε, respectively. This
corresponds to the deformation of the symmetry r → −r . One should note that the restriction
to just half of the number of roots will break the invariance under the action of WPT .

4.2. PT -symmetrically deformed G2-Calogero–Moser–Sutherland models

The G2-CMS-model constitutes a further standard example, since it can be viewed as the
classical three-body problem with a two and a three-body interaction term [30]. As in
the previous subsection we may now realize the roots in various different ways. Either
we can take the so-called standard three-dimensional representation for the simple roots
α1 = ε1 − ε2, α2 = −2ε1 + ε2 + ε3 as concrete realization for the simple roots of G2 in R

3 and
the dynamical variables to be q = {q1, q2, q3} or alternatively we may also represent them in
a two-dimensional space as α1 = (ε2 − √

3ε1)/
√

2, α2 = √
6ε1 and express the dynamical

variables in terms of Jacobi relative coordinates q = {X, Y }. Once again the comparison

10
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between the two representations yields to the same relations for the Jacobi relative coordinates
X = (q1 −q2)/

√
2 and Y = (q1 +q2 −2q3)/

√
6. Explicitly the inner products in all coordinate

systems are computed to

α1 · q = q1 − q2 =
√

2X =
√

2r sin φ, (4.5)

(α1 + α2) · q = q3 − q1 = − 1√
2
(
√

3Y + X) = −
√

2r sin

(
2π

3
− φ

)
, (4.6)

(2α1 + α2) · q = q3 − q2 = − 1√
2
(
√

3Y − X) = −
√

2r sin

(
2π

3
+ φ

)
, (4.7)

α2 · q = q2 + q3 − 2q1 = −
√

3

2
(
√

3X + Y ) =
√

6r cos

(
2π

3
+ φ

)
, (4.8)

(3α1 + α2) · q = q1 + q3 − 2q2 =
√

3

2
(
√

3X − Y ) =
√

6r cos

(
2π

3
− φ

)
, (4.9)

(3α1 + 2α2) · q = 2q3 − q1 − q2 = −
√

6Y = −
√

6r cos φ. (4.10)

The expressions for the short roots (4.5)–(4.7) just yield the expressions for the A2-roots
α1,−α2 and −α1 − α2 in the standard representation. Using the expressions (4.5)–(4.10)
in the Hamiltonian HPT CMS in (2.3), the PT -symmetrically deformed G2-CMS potential
becomes

V
G2
PT CMS = gs

∑
1�j<k�3

j,k �=l

V [R(ε)(qj − qk) + i/3(−1)j+kI (ε)(qj + qk − 2ql)]

+ gl

∑
1�j<k�3

j,k �=l

V [(−1)j+k+1R(ε)(qj + qk − 2ql) + iI (ε)(qj − qk)]. (4.11)

As a result of the aforementioned relation between the A2- and G2- roots the corresponding
potentials reduce as V

G2
PT CMS → V

A2
PT CMS, when we switch off the three-particle interaction

gl → 0 and scale the deformation function. When specifying further R(ε) = cosh ε and
I (ε) = √

3 sinh ε we obtain

V
G2
PT CMS =

∑
k=−1,0,1

gsV

[√
2r sin

(
φ − iε + k

2π

3

)]
+ glV

[√
6r cos

(
φ − iε + k

2π

3

)]
.

(4.12)

Once again we may also choose a different type of deformations according to ( 3.15), in
which the PT -symmetrically extended model can be brought into the form

V
G2
PT CMS = gs

2

∑
1�j<k�3

[V [(R(ε) + iI (ε))(qj − qk)] + V [(R(ε) − iI (ε))(qj − qk)]]

+
gl

2

∑
1�j<k�3

j,k �=l

[V [(R(ε) + iI (ε))(qj + qk − 2ql)]

+ V [(R(ε) + iI (ε))(qj + qk − 2ql)]]. (4.13)

When choosing the roots to be in the standard representation. We may also express this in
terms of Jacobian relative coordinates with the choice R(ε) = 1 and I (ε) = ε/r as in the

11
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A2-case, such that the potential becomes

V
G2
PT CMS =

∑
k=−1,0,1
n=−1,1

gs

2
V

[√
2(r + iεn) sin

(
φ + k

2π

3

)]
+

gl

2
V

[√
6(r + iεn) cos

(
φ + k

2π

3

)]
.

(4.14)

Let us now study some physical properties of these models.

4.3. Eigensystems

Let us now specialize the potential to the one of the Calogero model, i.e. we take it to be
V (x) ∼ 1/x2, and determine the eigensystems of the deformed models. In general this is a
difficult task as even for the undeformed CMS-models the eigenfunctions are combinations
of Vandermode determinants and Jack polynomials, e.g. [31]. However, in the cases under
consideration we can follow a different route and be very explicit for some very particular
choices of the deformation functions. As illustrated in the last subsection we may just consider
the G2-Calogero model and treat the A2-Calogero model as a special case of the former by
switching off the three-particle interaction. The A2-model was already solved by Calogero
[16] almost fourty years ago and the G2-case thereafter by Wolfes [30]. Relying on these
solutions, the construction of eigensystems for some specific deformed system is fairly simple,
as they may be obtained by implementing a shift as was done in the A2-case [19]. For other
choices of the functions R(ε) and I (ε) the solutions cannot be constructed in direct analogy
to the undeformed case.

However, as was observed in [19, 32] even the simpler scenario is instructive as there are a
few differences in the argumentation leading to various constraints on the parameters resulting
from the implementation of physical requirements. The main consequence of the deformation
is that some irregular solutions, which had to be discarded in the undeformed case become
perfectly viable regularized solutions after the deformation. As a result the energy spectra
of the deformed systems differ from those of the undeformed ones. Let us briefly recall the
argumentation of [16, 30] and treat thereafter the deformed case.

4.3.1. The undeformed case. The above mentioned variable transformations (x1, x2, x3) →
(R,X, Y ) → (R, r, φ) have the virtue that they convert the differential equation into a form
allowing for complete separability [16, 30]. The Laplace operator transforms simply as

�x1x2x3 → 1

3

∂2

∂R2
+

∂2

∂X2
+

∂2

∂Y 2
→ 1

3

∂2

∂R2
+

∂2

∂r2
+

1

r2

∂2

∂φ2
+

1

r

∂

∂r
(4.15)

the confining potential transforms as

m2

16

∑
α∈�

(α · q)2 → 3

8
m2(X2 + Y 2) → ω2

2
r2 (4.16)

and the Calogero potential as

gs

2

∑
α∈�s

1

(α · q)2
→ 9

2
g

(X2 + Y 2)2

(X3 − 3XY 2)2
→ 9

2

g

r2 sin(3φ)
, (4.17)

gl

2

∑
α∈�s

1

(α · q)2
→ 9

2
g

(X2 + Y 2)2

(Y 3 − 3YX2)2
→ 9

2

g

r2 cos(3φ)
. (4.18)
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Assembling these expressions into a Hamiltonian it is then easy to see that in the (R, r, φ)-
system the eigenfunctions can be factorized into �(R, r, φ) = �(R)χ(r)f (φ), which leads,
after separating off the center of mass motion, to the two separate eigenvalue equations

(
− ∂2

∂r2
− 1

r

∂

∂r
+ ω2r2 +

λ2

r2

)
χ(r) = Eχ(r), (4.19)

(
− ∂2

∂φ2
+

9gs

sin(3φ)
+

9gl

cos(3φ)

)
f (φ) = λ2f (φ). (4.20)

These equations may be solved generically for any real values of the parameters r, φ, gs, gl, ω

including even the eigenvalues E and λ2 by

χ(r) = rλ exp(−ωr2/2)1F1

[
1

2
(1 + λ) − E

4ω
; 1 + λ;ωr2

]
, (4.21)

f (φ) = sin2κs (3φ) cos2κl (3φ)2F1

[
κs + κl − λ

6
, κs + κl +

λ

6
; 2κs +

1

2
; sin2(3φ)

]
. (4.22)

Here we abbreviated the constants κs/l = κ±
s/ l = (1 ± √

1 + 4gs/l)/4, 1F1 denotes the
Kummer confluent hypergeometric function and 2F1 the Gauss hypergeometric function.
Implementing now various different physical requirements leads to the quantization condition
for the eigenvalues and several restrictions on the parameters

P 1: E = 2|ω|(2n + λ + 1) for n ∈ N0, (4.23)

P 2: λ > 0, (4.24)

P 3: κs → κ+
s , κl → κ+

l , (4.25)

P 4: λ = 6(κs + κl + �) for � ∈ N0. (4.26)

We briefly recall and extend the argumentations in order to illustrate how they need to be
modified in the deformed scenario.

P 1: The quantization condition P 1 originates from the physical requirement that the
wavefunction should vanish for r → ∞. Using the asymptotic expansion for Kummer’s
confluent hypergeometric function, see, e.g. [33],

1F1[α; γ ; z] ∼ �(γ )

�(α)
ezzα−γ G(1 − α; γ − α, z) for Re z > 0, (4.27)

1F1[α; γ ; z] ∼ �(γ )

�(γ − α)
(−z)−αG(α;α − γ − 1,−z) for Re z < 0, (4.28)

with G(α; γ, z) = 1+α/z+α(α +1)γ (γ +1)/2!/z2 + · · · , one observes that for the arguments
of the solution χ(r) in (4.21) the function will usually diverge exponentially, unless this
divergence is compensated by a diverging gamma function, either from the corresponding
�(α) in (4.27) or �(γ − α) in (4.28). As this is the case when the first argument in 1F1

becomes a negative integer, i.e. when the hypergeometric series terminates, the wavefunction
χ(r) vanishes at infinity with the condition P 1. For these values the Kummer confluent
hypergeometric function reduces to a generalized Laguerre polynomial Lα

n(z) by means of the
identity

1F1[−n;α + 1; z] = �(n + 1)�(α + 1)

�(n + α + 1)
Lα

n(z) for n ∈ N0, α ∈ R (4.29)
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and one obtains, up to normalization, the expression for χ(r) already found by Calogero [16].
Note that this argumentation does not change even if we continue r into the complex plane
and P 1 remains also valid in that case.

P 2: The constraint P 2 arises from the condition that a proper physical wavefunction should
be finite on its domain. In the undeformed case the divergence of χ(r) at r = 0 can be cured
by the constraint P 2. Clearly this constraint can be removed if r acquires a nonvanishing
imaginary part, since the factor rλ no longer diverges for r → 0.

P 3: The constraint P 3 results from same requirement as P 2, but demanding finiteness in the
entire domain also for its derivative. For κs = κ−

s and κl = κ−
l the prefactors in (4.22) would

diverge for φ = 0, π/3, . . . and φ = π/6, π/2, . . . , respectively. Clearly when Im φ �= 0
there is no longer any justification for this constraint and it can be removed, thus allowing the
values λ < 0.

P 4: The quantization condition P 4 stems from the divergence of f (φ) at for instance φ = π/6.
This is seen from the fact that for generic arguments the function 2F1[α, β; γ ; 1] is absolutely
convergent when Re γ > Re (α + β), which for the values in (4.22) translates into κl < 1/4.
Having already excluded κ−

l by condition P 3 this inequality can never be satisfied. However,
when α becomes a negative integer the hypergeometric series terminates and reduces to a
Jacobi polynomial P

α,β

� (z) by means of the identity

2F1[−�, α + β + � + 1;α + 1; z] = �(� + 1)�(α + 1)

�(� + α + 1)
P

α,β

� (1 − 2z)

for � ∈ N0, α, β ∈ R. (4.30)

Since P
α,β

� (−1) = (β + 1)�/�! with (x)n := x(x + 1)(x + 2) . . . (x + n) the divergence is
removed by condition P 4 . Alternatively we could also equate the second argument in (4.22)
to an integer and deduce λ = −6(κs + κl + �), which is however excluded by condition P 2.
Note that when Im φ �= 0, we will even leave the unit circle |z| � 1, in which convergence can
be achieved unless we restrict the real part of φ depending on its imaginary part, which seems
very artificial. Thus in this case terminating the series by means of property (4.30) appears
even more natural than in the undeformed case.

In summary, when the physical constraints P 1, P 2, P 3, P 4 hold, the corresponding
wavefunctions are

χλ
n (r) ∼ �(n + 1)ω

λ
2 rλ exp(−ωr2/2)Lλ

n(ωr2), (4.31)

f
κs,,κl

� (φ) ∼ �(� + 1) sin2κs (3φ) cos2κl (3φ)P
2κs−1/2,2κl−1/2
� [1 − 2 sin2(3φ)] (4.32)

with energy spectrum

En� = 2|ω|[2n + 6(κ+
s + κ+

l + �) + 1
]

for n, � ∈ N0. (4.33)

Let us now see in a concrete case how the deformation weakens the constraints and how it
influences the physics of the models.

4.3.2. The deformed case. We may now consider various types of deformations (3.10) or
(3.15) depending in addition on the possible selections for the deformation functions R(ε)

and I (ε). We consider the deformed G2-Calogero model, with the deformation (3.10) and the
simplest choice for the deformation functions R(ε) = cosh ε and I (ε) = √

3 sinh ε. This leads
to the differential equations (4.19) and (4.20) with a shifted φ → φ + iε, i.e. the wavefunctions
are simply obtained from (4.31), (4.32) by ηφ�(R, r, φ) with ηφ = exp(pφε). However,
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there is a small change in the physical interpretation. From the discussion of the previous
subsection follows that P 1, P 2 and P 4 still have to be implemented on physical grounds, but
to demand P 3 lacks any justification, since the wavefunctions are regularized and no longer
diverge. Therefore P 3 can be relaxed. Consequently we end up with the modified energy
spectrum

E±
n� = 2|ω|[2n + 6

(
κ±

s + κ±
l + �

)
+ 1

]
for n, � ∈ N0, (4.34)

such that besides the energies E+
n� we may now also encounter the energies E−

n�. Note that we
have a degeneracy E+

n� = E−
n′�′ whenever

n′ − n + 3(�′ − �) = 3
2

√
1 + 4gs + 3

2

√
1 + 4gl. (4.35)

A similar observation was made for A2-Calogero model in [19].
Alternatively we may investigate the deformed G2-Calogero model (4.14) based on the

deformed roots (3.15) with deformation R(ε) = 1 and I (ε) = ε/r . The wavefunctions are
easy to construct in this case when we break the invariance under the extended Coxeter group
WPT by restricting the sum in the potential to the positive or negative roots only and scaling
the coupling constants gs, gl by a factor of 2. Then the corresponding wavefunctions result
from (4.31), (4.32) as η±

r �(R, r, φ) with η±
r = exp(±prε). For each of the models the

constraints P 1, P 3 and P 4 still hold on physical grounds, but as the divergence at r = 0 for
χ(r) has vanished we no longer have to demand P 2. This means for both models, that is
either extending the roots just over the positive or just over the negative roots, we have the
identical energy spectra

E±
n = 2|ω|(2n ± λ + 1), (4.36)

thus allowing in addition to E+
n also E−

n . We encounter the degeneracy E+
n = E−

n′ when
λ = n′ − n. Due to the identity

zm−n�(n + 1)Lm−n
n (z2) = (−z)n−m�(m + 1)Ln−m

m (z2) (4.37)

we find in that situation the wavefunction are relate as

χλ
n (r + iε) = (−1)n

′−nχ−λ
n′ (r + iε). (4.38)

In general, we have the symmetry χλ
n (r) = (−1)λχλ

n (−r), such that we can relate the
wavefunctions of the positive root model χλ

n,pos(r) and the negative root model χλ
n,neg(r)

by an anyonic statistic as χλ
n,pos(r) = (−1)λχλ

n,neg(r).

5. Conclusions

We have demonstrated that the Coxeter group represented in R
n can be deformed in a systematic

way to the PT -symmetrically extended Coxeter group WPT represented in R
n ⊕ iRn. As

we have shown there are various ways to achieve this. We may deform the roots across the
hyperplanes through the origin orthogonal to each root either by taking the imaginary part
to be a vector in this hyperplane (3.10) or a vector orthogonal to it (3.16 ). As a natural
application one may seek for models for which this group constitutes a symmetry group.
CMS-models are well known to be invariant under the action of W and we have demonstrated
how they may be deformed such that they remain invariant under the action of WPT . In
fact one simply needs to replace the roots αi by their deformed counterparts α̃i . We have
worked out the A2 and G2 cases in some detail by constructing explicitly the deformed root
systems and applying them thereafter to the corresponding CMS-models. When specializing
the deformation functions R(ε) and I (ε) in a certain way some easy cases resemble the
undeformed case with some simple shifts when transformed to Jacobian relative coordinates,
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which allowed one to determine their corresponding eigensystems. We discussed that as a
consequence of the deformation the physical reason leading to some constraints vanishes, such
that various restrictions on the parameter space of the model may be relaxed.

Various open challenges remain, as for instance to establish whether the deformations
studied here preserve integrability, analogously to what has been established in [20] for the
different types of deformation, to investigate models for different choices for the functions R(ε)

and I (ε) and to study in detail Coxeter groups of higher rank, together with their applications,
such as the CMS-models [34]. Models with different choices for the deformation functions will
certainly also lead to non-Hermitian Hamiltonians with real spectra, which may be explained
by the built in PT -symmetry [6, 35], pseudo-Hermiticity [5] or quasi-Hermiticity [36, 37].
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